SUBSTITUTED 4-STYRYL DERIVATIVES OF THE 5,6-BENZOQUINOLINE SERIES

N. S. Kozlov, V. V. Misenzhnikov, T. E. Kozlova, and N. B. Misenzhnikova Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 5, pp. 863-865, 1968

UDC 547.832.5'538.141'621:542.953

Catalytic condensation of arylidene-2-naphthylamines with p-phenylbenzylidenelacetone and p-bromobenzylideneacetone gives the corresponding substituted 4-styryl-2-aryl-5, 6-benzoquinolines.

Many styryl derivatives of nitrogen heterocycles show considerable chemotherapeutic activity and are characterized by a wide spectrum of activity. Hence there has been a considerable amount of research concerned with their synthesis. Some styrylquinolines are used in medicine as trypanocidal preparations and antiseptics [1]. The discovery that similar compounds inhibit the growth of malignant neoplasms is of special interest [2].

Styrylquinolines are conventionally prepared by the condensation of quinaldine or lepidine derivatives with aromatic aldehydes. However, this method is unsuitable for the synthesis of 4-styryl-5,6-benzo-quinolines because of the low reactivity of the methyl group in arylbenzolepidines. A certain role is also played by the position of this group, which is partially shielded by the benzene ring condensed in the 5,6-position of the heterocyclic molecule.

In this laboratory, we have developed a convenient synthesis of 4-styryl-2-aryl-5,6-benzoquinolines by the catalytic reaction of arylidine-2-naphthylamines with benzylideneacetone [3]. Continuing studies in this field, we decided to investigate the possibility of synthesizing substituted 4-styryl-5,6-benzoquinolines. For this purpose p-phenylbenzylideneacetone and p-bromobenzylideneacetone were condensed with arylidene-2-naphthylamines. Concentrated hydrochloric acid was used as catalyst.

$$\begin{array}{c}
CH \neq CH \\
CH_{2} \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
-H_{2}O; H_{2} \\
CH \neq CH
\end{array}$$

The structures of the compounds which we synthesized were verified by empirical and IR analysis. The absence of absorption bands characteristic for the stretching vibrations of C=0 and N=H, confirms the cyclization of the intermediate adduct.

EXPERIMENTAL

The reaction mixture, consisting of equimolar quantities (0.01 mole) of arylidene-2-naphthylamine, substituted benzylidene-acetone, and nitrobenzene, together with 15 ml of ethanol and 1 ml of conc. HCl, was heated in a sealed tube at 100° C for 45 min. The tube was cooled and opened. The precipitate was filtered off, washed with ammonia solution and methanol, and crystallized from an ethanol-benzene mixture. Yields, melting points, and analytical data are shown in the table.

REFERENCES

- 1. N. A. Novitskaya, Med. prom., 11, 39, 1960.
- 2. H. Gilman and G. Karmas, J. Am. Chem. Soc., 67, 342, 1945.
- 3. N. S. Kozlov, G. N. Kozlov and V. V. Misenzhnikov, USSR patent no. 161759; Byull, izobr., no. 8, 1964.

16 July 1966

Perm State Pedagogic Institute

Substituted 4-Styryl-2-aryl-5, 6-benzoquinolines

No.	Compound (X = 5,6-benzoquinoline)	Mp,°C	Empirical formula	N, %		
				found	calcu- lated	Yield,
1	2-Phenyl-4-(4"-phenylstyryl)-X	209—210	C ₃₄ H ₂₃ N	1.96; 2.03	1,87	35.6
2	2-Methoxyphenyl-4-(4"-phenylstyryl)-X	194—196	C ₃₄ H ₂₅ NO	3.10; 2.95	3.02	33.2
3	2-(4'-Chlorophenyl)-4-(4''-phenyl-styryl)-X	192—193	C ₃₃ H ₂₂ C1N	3.23; 3.13	3,00	45.8
4	2-(4'Bromophenyl)-4-(4"-phenyl-styryl)-X	209—210	C ₃₃ H ₂₂ BrN	3.00; 2.88	2.73	32,7
5	2-(4'-Nitrophenyl)-4-(4"-phenylstyryl)-X	220—222	C ₃₃ H ₂₂ N ₂ O	5.88; 5.61	5.82	55.5
6	2-(3'-Nitrophenyl)-4-(4''-phenylstyryl)-X	180—181	C ₃₃ H ₂₂ N ₂ O	5.39; 5.44	5.61	61.1
7	2-(3',4'-Dimethoxyphenyl)-4-(4''-phenyl-styryl)-X	184—185	C ₃₅ H ₂₇ NO ₂	2.94; 3.01	2.85	41,0
8	2-(3',4'-Methylenedioxyphenyl-4-(4''- phenylstyryl)-X	204	C ₃₄ H ₂₄ NO ₂	2.74; 2.61	2.92	27,7
9	2-(4'-Xenyl)-4-(4''-phenylstyryl)-X	204—205	C ₃₉ H ₂₇ N	2.89; 2.71	2.74	28.5
10	2-(4'-Ethoxyphenyl)-4-(4''-phenyl-styryl)-X	204—205	C ₃₅ H ₂₆ NO	3.00; 3.10	2.89	37.6
11	2-(4'-Fluorophenyl)-4-(4''-phenyl- styryl)-X	169—170	C ₃₃ H ₂₂ FN	3.03; 3.13	2.96	35.9
12	2-(3'-Hydroxyphenyl)-4-(4''-phenyl-styryl)-X	221—222	$C_{34}H_{25}NO$	3.01; 2.98	3.11	48.3
13	2-Phenyl-4-(4"-bromostyryl)-X	151—152	C ₂₇ H ₁₈ BrN	3.04; 3.15	3.21	57.2
14	2-(4'-Chlorophenyl)-4-(4''-bromo- styryl)-X	192—193	C ₂₇ H ₁₇ BrClN	3.11; 3.00	2.97	60.0
15	2-(3'-Chlorophenyl)-4-(4''-bromostyryl)-X	187—188	C ₂₇ H ₁₇ BrClN	2.74; 2.85	2.97	65,2
16	2-(4'-Fluorophenyl)-4-(4"-bromo- styryl)-X	181—182	C ₂₇ H ₁₇ BrFN	2.99; 3.91	3.08	45.3
17	2-(3'-Fluorophenyl)-4-(4''-bromostyryl)-X	175—176	C ₂₇ H ₁₇ BrFN	3.02; 3.10	3.08	51.0
18	2-(4'-Bromophenyl)-4-(4''-bromostyryl)-X	206—207	$C_{27}H_{17}Br_2N$	2.68; 2.60	2.72	53.2
19	2-(4'-Nitrophenyl)-4-(4"-bromostyryl)-X	257—259	C ₂₇ H ₁₇ BrN ₂ O ₅	5.68; 5.61	5.82	34.5
20	2-(3'-Nitrophenyl)-4-(4"-bromostyryl)-X	253—254	C ₂₇ H ₁₇ BrN ₂ O ₂	5.70; 5.76	5.82	41.0
21	2-(2'-Hydroxyphenyl)-4-(4''-bromostyryl)-X	204—205	C ₂₇ H ₁₈ BrNO	2.94; 2.92	3.09	58.4
22	2-(4'-Methoxyphenyl)-4-(4''-bromostyryl)-X	211—212	C ₂₈ H ₁₉ BrNO	2.84; 2.96	3.00	35.1
23	2-(3',4'-Dimethoxyphenyl)-4-(4"-bromostyryl)-X	132—133	C ₂₉ H ₂₁ BrNO ₂	2.69; 2.75	2.82	44.0
24	2-(4'-Ethoxyphenyl)-4-(4"-bromostyryl)-X	191—192	C ₂₉ H ₂₁ BrNO	2.74; 2.70	2.91	31.4